p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.33Q8, C23.212C24, C22.502+ 1+4, C22.342- 1+4, C4.19(C4×Q8), C42.C2⋊13C4, C42.181(C2×C4), C42⋊4C4.14C2, C42⋊9C4.22C2, C22.34(C22×Q8), (C22×C4).477C23, C22.103(C23×C4), (C2×C42).419C22, C2.C42.48C22, C23.63C23.3C2, C23.65C23.30C2, C2.5(C22.34C24), C2.5(C22.35C24), C2.4(C23.41C23), C2.17(C23.33C23), C2.12(C2×C4×Q8), (C4×C4⋊C4).35C2, C4⋊C4.105(C2×C4), (C2×C4).162(C2×Q8), (C2×C4).32(C22×C4), C22.97(C2×C4○D4), (C2×C4).651(C4○D4), (C2×C4⋊C4).182C22, (C2×C42.C2).11C2, SmallGroup(128,1062)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.33Q8
G = < a,b,c,d | a4=b4=c4=1, d2=a2c2, ab=ba, cac-1=dad-1=ab2, bc=cb, dbd-1=b-1, dcd-1=c-1 >
Subgroups: 332 in 222 conjugacy classes, 148 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C42.C2, C42⋊4C4, C4×C4⋊C4, C42⋊9C4, C23.63C23, C23.65C23, C2×C42.C2, C42.33Q8
Quotients: C1, C2, C4, C22, C2×C4, Q8, C23, C22×C4, C2×Q8, C4○D4, C24, C4×Q8, C23×C4, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C4×Q8, C23.33C23, C22.34C24, C22.35C24, C23.41C23, C42.33Q8
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 27 23 55)(2 28 24 56)(3 25 21 53)(4 26 22 54)(5 41 37 9)(6 42 38 10)(7 43 39 11)(8 44 40 12)(13 49 45 17)(14 50 46 18)(15 51 47 19)(16 52 48 20)(29 61 57 69)(30 62 58 70)(31 63 59 71)(32 64 60 72)(33 121 125 89)(34 122 126 90)(35 123 127 91)(36 124 128 92)(65 102 78 74)(66 103 79 75)(67 104 80 76)(68 101 77 73)(81 93 113 117)(82 94 114 118)(83 95 115 119)(84 96 116 120)(85 98 105 109)(86 99 106 110)(87 100 107 111)(88 97 108 112)
(1 13 5 59)(2 46 6 32)(3 15 7 57)(4 48 8 30)(9 63 55 17)(10 72 56 50)(11 61 53 19)(12 70 54 52)(14 38 60 24)(16 40 58 22)(18 42 64 28)(20 44 62 26)(21 47 39 29)(23 45 37 31)(25 51 43 69)(27 49 41 71)(33 75 100 93)(34 104 97 118)(35 73 98 95)(36 102 99 120)(65 86 116 92)(66 107 113 121)(67 88 114 90)(68 105 115 123)(74 110 96 128)(76 112 94 126)(77 85 83 91)(78 106 84 124)(79 87 81 89)(80 108 82 122)(101 109 119 127)(103 111 117 125)
(1 79 7 83)(2 67 8 116)(3 77 5 81)(4 65 6 114)(9 93 53 73)(10 118 54 102)(11 95 55 75)(12 120 56 104)(13 89 57 85)(14 122 58 106)(15 91 59 87)(16 124 60 108)(17 33 61 98)(18 126 62 110)(19 35 63 100)(20 128 64 112)(21 68 37 113)(22 78 38 82)(23 66 39 115)(24 80 40 84)(25 101 41 117)(26 74 42 94)(27 103 43 119)(28 76 44 96)(29 105 45 121)(30 86 46 90)(31 107 47 123)(32 88 48 92)(34 70 99 50)(36 72 97 52)(49 125 69 109)(51 127 71 111)
G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,27,23,55)(2,28,24,56)(3,25,21,53)(4,26,22,54)(5,41,37,9)(6,42,38,10)(7,43,39,11)(8,44,40,12)(13,49,45,17)(14,50,46,18)(15,51,47,19)(16,52,48,20)(29,61,57,69)(30,62,58,70)(31,63,59,71)(32,64,60,72)(33,121,125,89)(34,122,126,90)(35,123,127,91)(36,124,128,92)(65,102,78,74)(66,103,79,75)(67,104,80,76)(68,101,77,73)(81,93,113,117)(82,94,114,118)(83,95,115,119)(84,96,116,120)(85,98,105,109)(86,99,106,110)(87,100,107,111)(88,97,108,112), (1,13,5,59)(2,46,6,32)(3,15,7,57)(4,48,8,30)(9,63,55,17)(10,72,56,50)(11,61,53,19)(12,70,54,52)(14,38,60,24)(16,40,58,22)(18,42,64,28)(20,44,62,26)(21,47,39,29)(23,45,37,31)(25,51,43,69)(27,49,41,71)(33,75,100,93)(34,104,97,118)(35,73,98,95)(36,102,99,120)(65,86,116,92)(66,107,113,121)(67,88,114,90)(68,105,115,123)(74,110,96,128)(76,112,94,126)(77,85,83,91)(78,106,84,124)(79,87,81,89)(80,108,82,122)(101,109,119,127)(103,111,117,125), (1,79,7,83)(2,67,8,116)(3,77,5,81)(4,65,6,114)(9,93,53,73)(10,118,54,102)(11,95,55,75)(12,120,56,104)(13,89,57,85)(14,122,58,106)(15,91,59,87)(16,124,60,108)(17,33,61,98)(18,126,62,110)(19,35,63,100)(20,128,64,112)(21,68,37,113)(22,78,38,82)(23,66,39,115)(24,80,40,84)(25,101,41,117)(26,74,42,94)(27,103,43,119)(28,76,44,96)(29,105,45,121)(30,86,46,90)(31,107,47,123)(32,88,48,92)(34,70,99,50)(36,72,97,52)(49,125,69,109)(51,127,71,111)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,27,23,55)(2,28,24,56)(3,25,21,53)(4,26,22,54)(5,41,37,9)(6,42,38,10)(7,43,39,11)(8,44,40,12)(13,49,45,17)(14,50,46,18)(15,51,47,19)(16,52,48,20)(29,61,57,69)(30,62,58,70)(31,63,59,71)(32,64,60,72)(33,121,125,89)(34,122,126,90)(35,123,127,91)(36,124,128,92)(65,102,78,74)(66,103,79,75)(67,104,80,76)(68,101,77,73)(81,93,113,117)(82,94,114,118)(83,95,115,119)(84,96,116,120)(85,98,105,109)(86,99,106,110)(87,100,107,111)(88,97,108,112), (1,13,5,59)(2,46,6,32)(3,15,7,57)(4,48,8,30)(9,63,55,17)(10,72,56,50)(11,61,53,19)(12,70,54,52)(14,38,60,24)(16,40,58,22)(18,42,64,28)(20,44,62,26)(21,47,39,29)(23,45,37,31)(25,51,43,69)(27,49,41,71)(33,75,100,93)(34,104,97,118)(35,73,98,95)(36,102,99,120)(65,86,116,92)(66,107,113,121)(67,88,114,90)(68,105,115,123)(74,110,96,128)(76,112,94,126)(77,85,83,91)(78,106,84,124)(79,87,81,89)(80,108,82,122)(101,109,119,127)(103,111,117,125), (1,79,7,83)(2,67,8,116)(3,77,5,81)(4,65,6,114)(9,93,53,73)(10,118,54,102)(11,95,55,75)(12,120,56,104)(13,89,57,85)(14,122,58,106)(15,91,59,87)(16,124,60,108)(17,33,61,98)(18,126,62,110)(19,35,63,100)(20,128,64,112)(21,68,37,113)(22,78,38,82)(23,66,39,115)(24,80,40,84)(25,101,41,117)(26,74,42,94)(27,103,43,119)(28,76,44,96)(29,105,45,121)(30,86,46,90)(31,107,47,123)(32,88,48,92)(34,70,99,50)(36,72,97,52)(49,125,69,109)(51,127,71,111) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,27,23,55),(2,28,24,56),(3,25,21,53),(4,26,22,54),(5,41,37,9),(6,42,38,10),(7,43,39,11),(8,44,40,12),(13,49,45,17),(14,50,46,18),(15,51,47,19),(16,52,48,20),(29,61,57,69),(30,62,58,70),(31,63,59,71),(32,64,60,72),(33,121,125,89),(34,122,126,90),(35,123,127,91),(36,124,128,92),(65,102,78,74),(66,103,79,75),(67,104,80,76),(68,101,77,73),(81,93,113,117),(82,94,114,118),(83,95,115,119),(84,96,116,120),(85,98,105,109),(86,99,106,110),(87,100,107,111),(88,97,108,112)], [(1,13,5,59),(2,46,6,32),(3,15,7,57),(4,48,8,30),(9,63,55,17),(10,72,56,50),(11,61,53,19),(12,70,54,52),(14,38,60,24),(16,40,58,22),(18,42,64,28),(20,44,62,26),(21,47,39,29),(23,45,37,31),(25,51,43,69),(27,49,41,71),(33,75,100,93),(34,104,97,118),(35,73,98,95),(36,102,99,120),(65,86,116,92),(66,107,113,121),(67,88,114,90),(68,105,115,123),(74,110,96,128),(76,112,94,126),(77,85,83,91),(78,106,84,124),(79,87,81,89),(80,108,82,122),(101,109,119,127),(103,111,117,125)], [(1,79,7,83),(2,67,8,116),(3,77,5,81),(4,65,6,114),(9,93,53,73),(10,118,54,102),(11,95,55,75),(12,120,56,104),(13,89,57,85),(14,122,58,106),(15,91,59,87),(16,124,60,108),(17,33,61,98),(18,126,62,110),(19,35,63,100),(20,128,64,112),(21,68,37,113),(22,78,38,82),(23,66,39,115),(24,80,40,84),(25,101,41,117),(26,74,42,94),(27,103,43,119),(28,76,44,96),(29,105,45,121),(30,86,46,90),(31,107,47,123),(32,88,48,92),(34,70,99,50),(36,72,97,52),(49,125,69,109),(51,127,71,111)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4L | 4M | ··· | 4AJ |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | Q8 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C42.33Q8 | C42⋊4C4 | C4×C4⋊C4 | C42⋊9C4 | C23.63C23 | C23.65C23 | C2×C42.C2 | C42.C2 | C42 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 2 | 1 | 4 | 6 | 1 | 16 | 4 | 4 | 2 | 2 |
Matrix representation of C42.33Q8 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0],[2,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,3,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0] >;
C42.33Q8 in GAP, Magma, Sage, TeX
C_4^2._{33}Q_8
% in TeX
G:=Group("C4^2.33Q8");
// GroupNames label
G:=SmallGroup(128,1062);
// by ID
G=gap.SmallGroup(128,1062);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,680,758,219,184,675,80]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*c^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations